

Communications Toolbox
Release Notes

The “Communications Toolbox 2.1 Release Notes” on page 1-1 describe the
changes introduced in the latest version of the Communications Toolbox.
The following topics are discussed in these Release Notes:

• “New Features” on page 1-2

• “Major Bug Fixes” on page 1-4

• “Upgrading from an Earlier Release” on page 1-5

• “Known Software and Documentation Problems” on page 1-15

The Communications Toolbox Release Notes also provide information
about the earlier versions of the product, in case you are upgrading from a
version that was released prior to Release 12. If you are upgrading from a
release earlier than Release 12, you should also see “Communications
Toolbox 2.0 Release Notes” on page 2-1.

Printing the Release Notes
If you would like to print the Release Notes, you can link to a PDF version.

ii

Contents

1
Communications Toolbox 2.1 Release Notes

New Features . 1-2
Galois Field Computations . 1-2
Enhancements for Reed-Solomon Codes 1-2
Arithmetic Coding . 1-3

Major Bug Fixes . 1-4

Upgrading from an Earlier Release . 1-5
Updating Existing Galois Field Code . 1-5
Updating Existing Reed-Solomon M-Code 1-10
Changes in Functionality . 1-13
Obsolete Functions . 1-13

Known Software and Documentation Problems 1-15

2
Communications Toolbox 2.0 Release Notes

New Features . 2-2
Convolutional Coding Functions . 2-2
Gaussian Noise Functions . 2-2
Other New Functions . 2-3
Enhancements to Existing Functions . 2-3

Major Bug Fixes . 2-4

Upgrading from an Earlier Release . 2-5
Changes in Functionality . 2-5
Obsolete Functions . 2-6

1
Communications Toolbox
2.1 Release Notes

New Features 1-2
Galois Field Computations 1-2
Enhancements for Reed-Solomon Codes 1-2
Arithmetic Coding 1-3

Major Bug Fixes 1-4

Upgrading from an Earlier Release 1-5
Updating Existing Galois Field Code 1-5
Updating Existing Reed-Solomon M-Code 1-10
Changes in Functionality 1-13
Obsolete Functions 1-13

Known Software and Documentation Problems 1-15

1 Communications Toolbox 2.1 Release Notes

1-2

New Features
This section summarizes the new features and enhancements introduced in the
Communications Toolbox 2.1.

If you are upgrading from a release earlier than Release 12.1, then you should
see “New Features” on page 2-2 of the Communications Toolbox 2.0 Release
Notes.

Galois Field Computations
The Communications Toolbox supports a new data type that allows you to
manipulate arrays of elements of a Galois field having 2m elements, where m
is an integer between 1 and 16. When you use this data type, most
computations have the same syntax that you would use to manipulate ordinary
MATLAB arrays of real numbers. The consistency with MATLAB syntax
makes the new Galois field capabilities easier to use than the analogous
Release 12 capabilities. For information about the new Galois field capabilities,
see “Galois Field Computations” in the Communications Toolbox
documentation.

Enhancements for Reed-Solomon Codes
The functions in the table below allow you to encode and decode Reed-Solomon
codes, including shortened Reed-Solomon codes. These functions enhance and
replace the older Reed-Solomon coding functions in the Communications
Toolbox.

When processing codes using these functions, you can control the generator
polynomial, the primitive polynomial used to describe the Galois field
containing the code symbols, and the position of the parity symbols.

Function Purpose

rsdec Reed-Solomon decoder

rsenc Reed-Solomon encoder

rsgenpoly Generator polynomial of Reed-Solomon code

New Features

1-3

For more information and examples, see “Block Coding” in the
Communications Toolbox documentation.

Arithmetic Coding
The functions in the table below allow you to perform arithmetic coding.

Function Purpose

arithdeco Decode binary code using arithmetic decoding

arithenco Encode a sequence of symbols using arithmetic coding

1 Communications Toolbox 2.1 Release Notes

1-4

Major Bug Fixes
The Communications Toolbox 2.1 includes several bug fixes made since
Version 2.0.1. You can see a list of the particularly important Version 2.1 bug
fixes. If you are viewing these Release Notes in PDF form, please refer to the
HTML form of the Release Notes, using either the Help browser or the
MathWorks Web site and use the link provided.

If you are upgrading from a release earlier than Release 12.1, then you should
see “Major Bug Fixes” on page 2-4 in the Communications Toolbox 2.0 Release
Notes.

Upgrading from an Earlier Release

1-5

Upgrading from an Earlier Release
This section describes the upgrade issues involved in moving from the
Communications Toolbox 2.0.1 to Version 2.1. This section discusses the
following topics:

• “Updating Existing Galois Field Code”

• “Updating Existing Reed-Solomon M-Code” on page 1-10

• “Changes in Functionality” on page 1-13

• “Obsolete Functions” on page 1-13

If you are upgrading from a version earlier than 2.0.1, then you should see
“Upgrading from an Earlier Release” on page 2-5 of the Communications
Toolbox 2.0 Release Notes.

Updating Existing Galois Field Code
If your existing code performs computations in Galois fields having 2m
elements, where m is an integer between 1 and 16, then you might want to
update your code to use the new Galois field capabilities.

Replacing Functions
The table below lists Release 12 functions that correspond to Release 13
functions or operators acting on the new Galois field data type. Compared to
the syntax of their Release 12 counterparts, the syntaxes of the Release 13
functions are different, but generally easier to use.

Release 12
Function

Release 13 Function
or Operator

Comments

gfadd +

gfconv conv

gfcosets cosets cosets returns a cell array, whereas
gfcosets returns a NaN-padded
matrix.

gfdeconv deconv

1 Communications Toolbox 2.1 Release Notes

1-6

Converting Between Release 12 and Release 13 Representations of Field
Elements
In some parts of your existing code, you might need to convert data between the
exponential format supported in Release 12 and the new Galois array. The code
example below performs such conversions on a sample vector that represents
elements of GF(16).

% Sample data
m = 4; % For example, work in GF(2^4) = GF(16).
a_r12 = [2 5 0 -Inf]; % GF(16) elements in exponential format

gfdiv ./

gffilter filter Unlike gffilter, filter also
returns the final states.

gflineq \

gfplus +

gfprimck isprimitive isprimitive detects primitivity but
not reducibility.

gfprimdf primpoly

gfprimfd primpoly

gfrank rank

gfroots roots Unlike gfroots, roots indicates
multiplicities of roots and can
process polynomials in an extension
field

gfsub -

gftuple .^, log, polyval See “Converting and Simplifying
Formats Using R13 Galois Arrays”
on page 1-9 for more details.

Release 12
Function

Release 13 Function
or Operator

Comments

Upgrading from an Earlier Release

1-7

% 1. Convert to the Release 13 Galois array.
A = gf(2,m); % Primitive element of the field
a_r13 = A.^(a_r12); % Positive exponents mean A to that power.
a_r13(find(a_r12 < 0)) = 0; % Negative exponents mean zero.

% 2. Convert back to the Release 12 exponential format.
m = a_r13.m; A = gf(2,m);
a_r12again = zeros(size(a_r13)); % Preallocate space in a matrix.
zerolocations = find(a_r13 == 0);
nonzerolocations = find(a_r13 ~= 0);
a_r12again(zerolocations) = -Inf; % Map 0 to negative exponent.
a_r12again(nonzerolocations) = log(a_r13(nonzerolocations));

% Check that the two conversions are inverses.
ck = isequal(a_r12,a_r12again)

ck =

 1

Converting Between Release 12 and Release 13 Representations of
Polynomials
Release 12 and Release 13 use different formats for representing polynomials
over GF(2m). Release 12 represents a polynomial as a vector of coefficients in
order of ascending powers. Depending on the context, each coefficient listed in
the vector represents either an element in a prime field or the exponential
format of an element in an extension field. Release 13 uses the conventions
described below.

Primitive polynomials. The functions gf, isprimitive, and primpoly represent a
primitive polynomial using an integer scalar whose binary representation lists
the coefficients of the polynomial. The least significant bit is the constant term.

For example, the scalar 13 has binary representation 1101 and represents the
polynomial D3 + D2 + 1.

Other polynomials. When performing arithmetic with, evaluating, or finding
roots of a polynomial, or when finding a minimal polynomial of a field element,
you represent the polynomial using a Galois vector of coefficients in order of
descending powers. Each coefficient listed in the vector represents an element

1 Communications Toolbox 2.1 Release Notes

1-8

in the field using the representation described in “How Integers Correspond to
Galois Field Elements”.

For example, the Galois vector gf([1 1 0 1],1) represents the polynomial
x3 + x2 + 1. Also, the Galois vector gf([1 2 3],3) represents the polynomial
x2 + Ax + (A+1), where A is a root of the default primitive polynomial for
GF(23). The coefficient of A+1 corresponds to the vector entry of 3 because the
binary representation of 3 is 11.

Example Showing Conversions. The code example below might help you determine
how to convert between the Release 12 and Release 13 formats for polynomials.

m = 3; % Work in GF(8).

poly_r12 = [1 1 0 1]; % 1+x+x^3, ascending order
poly_r13 = gf([1 0 1 1],m); % x^3+x+1 in GF(8), descending order

% R12 polynomials
pp_r12 = gfprimdf(m); % A primitive polynomial
mp_r12 = gfminpol(4,m); % The minimal polynomial of an element
rts_r12 = gfroots(poly_r12); % Find roots.

% R13 polynomials
pp_r13 = primpoly(m,'nodisplay'); % A primitive polynomial
mp_r13 = minpol(gf(4,m)); % The minimal polynomial of an element
rts_r13 = roots(poly_r13); % Find roots.

% R12 polynomials converted to R13 formats
% For primitive poly, change binary vector to decimal scalar.
pp_r12_conv = bi2de(pp_r12);
% For minimal poly, change ordering and make it a Galois array.
mp_r12_conv = gf(fliplr(mp_r12));
% For roots of polynomial, note that R12 answers are in
% exponential format. Convert to Galois array format.
rts_r12_conv = gf(2,m) .^ rts_r12;

% Check that R12 and R13 yield the same answers.
c1 = isequal(pp_r13,pp_r12_conv); % True.
c2 = isequal(mp_r13,mp_r12_conv); % True.
c3 = isequal(rts_r13,rts_r12_conv); % True.

Upgrading from an Earlier Release

1-9

Converting and Simplifying Formats Using R13 Galois Arrays
If your existing code uses gftuple to convert between exponential and
polynomial formats, or to simplify one of these formats, then the code example
below might help you determine how to perform those tasks using the Release
13 Galois array.

% First define key characteristics of the field.
m = 4; % For example, work in GF(2^4) = GF(16).
A = gf(2,m); % Primitive element of the field

% 1. Simplifying a Polynomial Format
poly_big = 2^10 + 2^7;
% Want to refer to the element A^10 + A^7. However,
% cannot use gf(poly_big,m) because poly_big is too large.
poly1 = A.^10 + A.^7 % One way to define the element.
poly2 = polyval(de2bi(poly_big,'left-msb'),A); % Another way.
% The results show that A^10 + A^7 equals A^3 + A^2 in this
% field, using the binary representation of 12 as 1100.

% 2. Simplifying an Exponential Format
exp_big = 39;
exp_simple = log(A.^exp_big) % Simplest exponential format.
% The results show that A^39 equals A^9 in this field.

% 3. Converting from Exponential to Polynomial Format
expf1 = 7;
pf1 = A.^expf1
% The results show that A^7 equals A^3 + A + 1 in this
% field, using the binary representation of 11 as 1011.

% 4. Converting from Polynomial to Exponential Format
pf2 = 11; % Represents the element A^3 + A + 1
expf2 = log(gf(pf2,m))
% The results show that A^3 + A + 1 equals A^7 in this field.

The output is below.

poly1 = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

1 Communications Toolbox 2.1 Release Notes

1-10

Array elements =

 12

exp_simple =

 9

pf1 = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 11

expf2 =

 7

Updating Existing Reed-Solomon M-Code
If your existing M-code processes Reed-Solomon codes, then you might want to
update it to use the enhanced Reed-Solomon capabilities. Below are some
important points to keep in mind:

• Use rsenc instead of rsenco, rsencode, and encode(...,'rs').

• Use rsdec instead of rsdeco, rsdecode, and decode(...,'rs').

• Use rsgenpoly instead of rspoly.

• rsenc and rsdec use Galois arrays for the messages and codewords. To learn
more about Galois arrays, see “Representing Elements of Galois Fields”.

• rsenc and rsdec interpret symbols in a different way compared to the
Release 12 functions. For an example showing how to convert between
Release 12 and Release 13 interpretations, see “Converting Between Release
12 and Release 13 Representations of Code Data” on page 1-11.

• The Release 12 functions support three different data formats. The
exponential format is most easily converted to the Release 13 format. To
convert your data among the various Release 12 formats as you prepare to

Upgrading from an Earlier Release

1-11

upgrade to the new Release 13 functions, see “Converting Among Various
Release 12 Representations of Coding Data” on page 1-12.

• rsenc, rsdec, and rsgenpoly use a Galois array in descending order to
represent the generator polynomial argument. The commands below
indicate how to convert generator polynomials from the Release 12 format to
the Release 13 format.
n = 7; k = 3; % Examples of code parameters
m = log2(n+1); % Number of bits in each symbol
gp_r12 = rspoly(n,k); % R12 exponential format, ascending order
gp_r13 = gf(2,m).^fliplr(gp_r12); % Convert to R13 format.

• rsenc places (and rsdec expects to find) the parity symbols at the end of each
word by default. To process codes in which the parity symbols are at the
beginning of each word, use the string 'beginning' as the last input
argument when you invoke rsenc and rsdec.

Converting Between Release 12 and Release 13 Representations of Code
Data
To help you update your existing M-code that processes Reed-Solomon codes,
the example below illustrates how to encode data using the new rsenc function
and the earlier rsenco function.

% Basic parameters for coding
m = 4; % Number of bits per symbol in each codeword
t = 2; % Error-correction capability
n = 2^m-1; k = n-2*t; % Message length and codeword length
w = 10; % Number of words to encode in this example

% Lookup tables to translate formats between rsenco and rsenc
p2i = [0 gf(2,m).^[0:2^m-2]]; % Galois vector listing powers
i2p = [-1 log(gf(1:2^m-1,m))]; % Integer vector listing logs

% R12 method, exponential format
% Exponential format uses integers between -1 and 2^m-2.
mydata_r12 = randint(w,k,2^m)-1;
code_r12 = rsenco(mydata_r12,n,k,'power'); % * Encode the data. *
% Convert any -Inf values to -1 to facilitate comparisons.
code_r12(isinf(code_r12)) = -1;
code_r12 = reshape(code_r12,n,w)'; % One codeword per row

1 Communications Toolbox 2.1 Release Notes

1-12

% R12 method, decimal format
% This yields same results as R12 exponential format.
mydata_r12_dec = mydata_r12 + 1; % Convert to decimal.
code_r12_dec = rsenco(mydata_r12_dec,n,k,'decimal'); % Encode.
code_r12_dectoexp = code_r12_dec - 1; % Convert to exponential.
c1 = isequal(code_r12,code_r12_dectoexp); % True.

% R12 method, binary format
% This yields same results as R12 exponential format.
mydata_r12_bin = de2bi(mydata_r12_dec',m); % Convert to binary.
code_r12_bin = rsenco(mydata_r12_bin,n,k,'binary'); % Encode.
code_r12_bintoexp = reshape(bi2de(code_r12_bin),n,w)' - 1;
c2 = isequal(code_r12,code_r12_bintoexp); % True.

% R13 method
mydata_r13 = fliplr(mydata_r12); % Reverse the order.
% Convert format, using +2 to get in the right range for indexing.
mydata_r13 = p2i(mydata_r13+2);
code_r13 = rsenc(mydata_r13,n,k); % * Encode the data. *
codeX = double(code_r13.x); % Retrieve data from Galois array.
% Convert format, using +1 to get in the right range for indexing.
codelogX = i2p(codeX+1);
codelogX = fliplr(codelogX); % Reverse the order again.

c3 = isequal(code_r12,codelogX) % True.

c3 =

 1

Converting Among Various Release 12 Representations of Coding Data
These rules indicate how to convert among the exponential, decimal, and
binary formats that the Release 12 Reed-Solomon functions support:

• To convert from decimal format to exponential format, subtract one.

• To convert from exponential format to decimal format, replace any negative
values by -1 and then add one.

Upgrading from an Earlier Release

1-13

• To convert between decimal and binary formats, use de2bi and bi2de. The
right-most bit is the most significant bit in this context.

The commands below illustrate these conversions.

msgbin = randint(11,4); % Message for a (15,11) = (2^4-1, 11) code
msgdec = bi2de(msgbin)'; % Binary to decimal
msgexp = msgdec - 1; % Decimal to exponential
codeexp = rsenco(msgexp,15,11,'power');
codeexp(find(codeexp < 0)) = -1; % Use -1 consistently.
codedec = codeexp + 1; % Exponential to decimal
codebin = de2bi(codedec); % Decimal to binary

Changes in Functionality
The table below lists functions whose behavior has changed.

Obsolete Functions
The table below lists functions that are obsolete. Although they are included in
Release 13 for backward compatibility, they might be removed in a future
release. The second column lists functions that provide similar functionality.
In some cases, the similar function requires different input arguments or
produces different output arguments, compared to the original function.

Function Change in Functionality

wgn The default measurement unit is the dBW, formerly
documented as “dB.” To specify this unit explicitly in the
syntax, set the powertype input argument to 'dBW', not
'dB'. The output of the function is unaffected by this
change in syntax.

Function Similar Function

gfplus + operator for Galois arrays

rsdeco rsdec

rsdecode rsdec

1 Communications Toolbox 2.1 Release Notes

1-14

rsenco rsenc

rsencode rsenc

rspoly rsgenpoly

Function Similar Function

Known Software and Documentation Problems

1-15

Known Software and Documentation Problems
You can see a list of known software and documentation problems in Version
2.1. If you are viewing these Release Notes in PDF form, please refer to the
HTML form of the Release Notes, using either the Help browser or the
MathWorks Web site and use the link provided.

1 Communications Toolbox 2.1 Release Notes

1-16

2
Communications Toolbox
2.0 Release Notes

New Features 2-2
Convolutional Coding Functions 2-2
Gaussian Noise Functions 2-2
Other New Functions 2-3
Enhancements to Existing Functions 2-3

Major Bug Fixes 2-4

Upgrading from an Earlier Release 2-5
Changes in Functionality 2-5
Obsolete Functions 2-6

2 Communications Toolbox 2.0 Release Notes

2-2

New Features
The Communications Toolbox 2.0 and the Communications Blockset 2.0 are
now separate products (that is, the Communications Toolbox no longer
includes blocks).

This section introduces the new features and enhancements added in the
Communications Toolbox 2.0 since the Communications Toolbox 1.4.

Note The Communications Blockset is described in a separate section.

Convolutional Coding Functions
The Communications Toolbox processes feedforward and feedback
convolutional codes that can be described by a trellis structure or a set of
generator polynomials. It uses the Viterbi algorithm to implement
hard-decision and soft-decision decoding. These new functions support
convolutional coding:

• convenc creates a convolutional code from binary data.

• vitdec decodes convolutionally encoded data using the Viterbi algorithm.

• poly2trellis converts a polynomial description of a convolutional encoder
to a trellis description.

• istrellis checks if the input is a valid trellis structure representing a
convolutional encoder.

For more information about using these functions, see “Convolutional Coding”
in the Communications Toolbox User’s Guide.

Gaussian Noise Functions
These new functions create Gaussian noise:

• awgn adds white Gaussian noise to the input signal to produce a specified
signal-to-noise ratio.

• wgn generates white Gaussian noise with a specified power, impedance, and
complexity.

New Features

2-3

Other New Functions
These functions are also new in Release 12:

• eyediagram plots an eye diagram.

• marcumq implements the generalized Marcum Q function.

• oct2dec converts octal numbers to decimal numbers.

• randerr generates bit error patterns. This is similar to the obsolete function
randbit, but it accepts a more intuitive set of input arguments and uses an
upgraded random number generator.

• randsrc generates random matrices using a prescribed alphabet.

• scatterplot produces a scatter plot.

• syndtable generates syndrome decoding tables. This is similar to the
obsolete function htruthtb, but it is not limited to single-error-correction
codes.

Enhancements to Existing Functions
The following functions have been enhanced in Release 12:

• biterr and symerr provide a third output argument that indicates the
results of individual comparisons. These functions also provide more
comprehensive support for comparisons between a vector and a matrix.

• de2bi and bi2de use an optional input flag to indicate the ordering of bits. If
you omit the flag from the list of input arguments, then the default behavior
matches that of Release 11.

• randint can operate without input arguments. Also, it can accept a negative
value for the optional third input argument.

2 Communications Toolbox 2.0 Release Notes

2-4

Major Bug Fixes
The Communications Toolbox includes several bug fixes, including the
following descriptions (online only) of particularly important bug fixes.

Upgrading from an Earlier Release

2-5

Upgrading from an Earlier Release
This section describes the upgrade issues involved in moving from the
Communications Toolbox 1.4 (Release 11) to the Communications Toolbox 2.0.

Changes in Functionality
The table below lists functions whose behavior has changed.

Function Change in Functionality

bi2de Distinguishes between rows and columns as input
vectors. Treats column vector as separate numbers, not
as digits of a single number. To adapt your existing code,
transpose the input vector if necessary.

biterr Input argument k must be large enough to represent all
elements of the input arguments x and y.

biterr,
symerr

Distinguish between rows and columns as input vectors.
To adapt your existing code, transpose the input vector if
necessary.

Use different strings for the input argument that controls
row-wise and column-wise comparisons.

Produce vector, not scalar, output if one input is a vector.
See these functions’ reference pages for more
information.

de2bi Second input argument, if it appears, must not be smaller
than the number of bits in any element of the first input
argument. Previously, the function produced a truncated
binary representation instead of an error. To adapt your
existing code, specify a sufficiently large number for the
second input argument and then truncate the answer
manually.

ddemod Default behavior uses no filter, not a Butterworth filter.
Regardless of filtering, the function uses an integrator to
perform demodulation.

2 Communications Toolbox 2.0 Release Notes

2-6

Obsolete Functions
The table below lists functions that are obsolete. Although they are included in
Release 12 for backward compatibility, they might be removed in a future
release. Where applicable, the second column lists functions that provide
similar functionality. In some cases, the similar function requires different
arguments or produces different results compared to the original function.

dmod, ddemod,
dmodce,
ddemodce,
modmap,
demodmap

For frequency shift keying method, the default separation
between successive frequencies is Fd, not 2*Fd/M. For
minimum shift keying method, the separation between
frequencies is Fd/2, not Fd.

encode,
decode

No longer support convolutional coding. Use convenc and
vitdec instead.

gflineq If the equation has no solutions, then the function
returns an empty matrix, not a matrix of zeros.

randint Uses state instead of seed to initialize random number
generator. See rand for more information about
initializing random number generators.

rcosflt The 'wdelay' flag is superfluous. The function now
behaves as the Release 11 function behaved with the
'wdelay' flag. For more information about changes in
rcosflt, see http://www.mathworks.com/support/
solutions/data/30549.shtml.

Function Similar Function, if Any

commgui

convdeco vitdec

convenco convenc

eyescat eyediagram, scatterplot

Function Change in Functionality

Upgrading from an Earlier Release

2-7

flxor bitxor

gen2abcd

htruthtb syndtable

imp2sys

oct2gen

randbit randerr

sim2gen

sim2logi

sim2tran

viterbi vitdec

Function Similar Function, if Any

2 Communications Toolbox 2.0 Release Notes

2-8

	Communications Toolbox 2.1 Release Notes
	New Features
	Galois Field Computations
	Enhancements for Reed-Solomon Codes
	Arithmetic Coding

	Major Bug Fixes
	Upgrading from an Earlier Release
	Updating Existing Galois Field Code
	Updating Existing Reed-Solomon M-Code
	Changes in Functionality
	Obsolete Functions

	Known Software and Documentation Problems

	Communications Toolbox 2.0 Release Notes
	New Features
	Convolutional Coding Functions
	Gaussian Noise Functions
	Other New Functions
	Enhancements to Existing Functions

	Major Bug Fixes
	Upgrading from an Earlier Release
	Changes in Functionality
	Obsolete Functions

